追尋物理學中“魔數”的最準確結果_風聞
返朴-返朴官方账号-关注返朴(ID:fanpu2019),阅读更多!2021-03-03 20:02
在諸多物理學常數中,精細結構常數算是最特殊的一個,歷史上也有諸多頂尖物理學家為之痴迷。被譽為“魔數”的它着實擁有與眾不同的魅力,它是無量綱的物理常數,其背後的理論本質仍然未知。另一方面,這個從原子光譜的“精細結構”中推導出的數字是描述電磁相互作用的基礎,約束着至今仍然牢固的標準模型,卻也時常透露着新物理的玄機。因此,儘管這一常數誕生已過百年,探索其奧秘的腳步仍在繼續。2020年底,物理學家對精細結構常數的測量又精進一步,為後續更深入的探索指明瞭方向。
撰文 | 一二三
2020年12月,物理學家們得到了“魔數”——精細結構常數(符號:α)的最新測量結果:α-1=137.035999206(11),準確度(Accuracy)達萬億分之81[1]。相比於2018年的結果[2],這一工作將準確度進一步提升了約2.5倍,成為了目前關於α最準確的測量[3]。新工作一經發表即獲得廣泛關注,下面先簡要介紹精細結構常數,然後更具體地介紹該工作及其意義。
什麼是精細結構常數?
精細結構常數α是一個表徵電磁相互作用強度的基本常數,其定義式為
(1)
α取值大約為1/137。作為一個由基本電荷、光速和普朗克常數簡單組合構成的無量綱常數,相比於其它有量綱的基本常數,α顯得更為特殊。科學家們推測哪怕其數值只是變化一點,比如變為1/138,星球就產生不了碳,人類文明也將無從談起[4]。為什麼α為這般大小?背後有何深意?可以從更基本的原理把它推導出來嗎?
這些問題可能毫無意義也沒有答案,就像在問籃球直徑與足球直徑的比為何是1.1一樣。但物理學家們(至少其中一部分)仍樂此不疲地追問,原因在於,α表述簡潔且頻繁出現。
α的誕生可追溯到1916年,當時德國物理學家索末菲在分析氫原子光譜“精細結構”時為了簡化計算,將幾個總是以同一形式組合在一起的物理常數(基本電荷、普朗克常數與光速)歸併,構成一個新的無量綱常數,即精細結構常數。在物理學中,這三個常數分別代表了電磁相互作用、量子論和相對論[5],彷彿是大自然在呼喚着人們快來這裏一探究竟。而且,人們曾經從類似的追問中獲得了更深層次的真理,比如巴爾末對氫原子光譜規律的總結,我們也希望能再次覓得物理世界運行的新規律。後來物理學家果真發現了一些深意,精細結構常數可以作為表徵電磁相互作用強度的量——耦合常數(Coupling constant)。
圖1:這張費米的著名照片裏的精細結構常數公式寫反了丨圖源:Britannica
但目前來看,類似的思考還是帶來了許多困惑。泡利曾説:“當我死後,我問魔鬼的第一個問題是:精細結構常數是什麼意思。”(也許是一種巧合,泡利生前最後住院的房間號就是137)。有人還給α抹上了一層神秘主義色彩,如英國物理學家愛丁頓認為這個數字具有某種精神內涵,且斷言α的倒數應是整數137(此前還堅信過是136),並堅持到了自己生命旅途的終點(當然這已被證明是錯誤的)。還有一些更為浪漫的説法:當科幻愛好者把數字42當作宇宙的終極答案時,物理學家選擇了137,如諾丁漢大學物理學家Laurence Eaves認為,“137這個數字將是人類向外星人發出的信號,表明我們對我們的星球有某種程度的掌握……外星人也知道這個數字,特別是如果他們發展了先進的科學。”遺憾的是這一美妙的説法可能並不成立,2020年4月發表的一項工作中[6],澳大利亞的一組研究人員宣稱,他們對於類星體的觀測結果表明精細結構“常數”更有可能是隨空間位置而變化的……
如此種種,給α披上了一層“神秘”面紗,“魔數”也因此得名。就像費曼所説,“這樣一個魔數來到我們身邊,卻沒人能理解它。你也許會説‘上帝之手’寫下了這個數字,而我們不知道他是怎樣下的筆。”魔數究竟毫無意義還是別有深意?我們不知道。
但另一方面,α的實驗測量具有重要研究意義。首先它頻繁出現在各類原子物理表達式中,如氫原子電離能、原子精細、超精細結構等。它的準確值將關係到相關研究的正確性。更重要的是,α作為耦合常數出現在量子電動力學(QED)和標準模型(SM)中,是檢驗相關理論正確性的關鍵。例如,標準模型預言電子反常因數ae可展開成α冪級數:
圖片
(2)
有了不依賴於QED計算的α的準確測量值,可以將其帶入(2)右邊,與獨立方法測得ae進行比對,從而檢驗QED和標準模型。事實上,正是對α的測量,才證實了μ子和強子對電子反常磁矩有貢獻。
精細結構常數的最新測量
圖2 Saïda Guellati-Khélifa 圖源:lkb.upmc.fr
布洛赫振盪(BO)最早在凝聚態物理領域發現,用來描述電子在週期勢場中受到一個恆定電場時的行為,後來也被研究光晶格中冷原子物理的科學家們發現並應用。在該實驗中,其實現方式是將原子置於兩組相向傳播的光構成的光晶格中,並使兩束光的頻率差線性變化。此時原子處在一個加速的駐波場中,感受到一個慣性力從而獲得動量。
如此傳遞的動量可以通過布洛赫理論計算週期勢場中原子的波函數得到,也可以用原子吸收與發射光子來直觀理解:原子吸收沿+n方向傳播的光子,獲得沿該方向反衝速度;同時
原子反衝速度由Ramsey-Bordé原子干涉儀探測。干涉儀測量反衝速度的原理可以這樣理解:原子物質波與第一束激光脈衝作用時,有一定概率被光子撞擊而獲得向上的反衝速度,還有一定概率不與光子發生作用。量子世界中這兩種情況可以同時發生,原子將處於被撞擊與不被撞擊的量子疊加態;讓原子自由演化一段時間,由於剛才獲得速度的不同這時原子物質波將分為量子疊加的上、下兩束,且將積累與反衝速度相關的相位差。最終再將這兩束重新合併,觀察兩者間干涉就能確定相位差,從而得到反衝速度。自由演化過程中可通過傳遞給原子大量動量,例如本工作採用的BO,來增加相位差的積累,從而得到更強的信號。
圖3:左裝置圖與實驗原理圖;兩種顏色表示兩次實驗以抵消重力梯度 | 圖源:文獻[1]。
實驗中原子被製備到4μk的極低温度,以便利用物質的波動性及提升測量精度。實驗裝置及步驟如圖3所示,可以只看藍色軌跡,第一組脈衝將原子分成了相干疊加的上下兩束。接下來,BO過程傳遞給上下兩分支一樣的動量,但由於空間位置不同,兩分支與光相互作用時獲得的相位也不一樣,且相位差
(4)
值得注意的是,最新結果與2018年的結果相比,差異達到5.4σ,是實驗錯誤?還是更激動人心的新物理?這些問題仍有待後續研究回答。測量出的新數值也將推動暗物質搜尋、μ子反常因數偏離等基礎物理問題的研究[1]。
追求極致
為了獲得如此準確的測量值,需要克服諸多技術上的挑戰,要求實驗者具備相當的經驗,並不斷精進實驗細節。事實上,Guellati-Khélifa團隊在2011年已用同樣的方法得到了當時最準確的α測量值。而本次工作的提升在於:好幾項系統誤差被降低了至少一個量級,例如地球重力場梯度、激光光束準直等;並且對裝置做了一定改進,例如真空腔的結構等。正是對於諸如此類細節的孜孜以求,才又一次刷新了α測量的準確度記錄,也帶領着人們向着真理又邁進了一步。
對於精細結構常數的實驗測量不僅能加深我們對於基礎物理的理解,同時也引領着如今被稱為量子精密測量與傳感領域的發展。和量子計算、量子通訊等領域一樣,該領域旨在運用量子效應提升生產生活方式,而且是幾個領域中最有可能在短期內就進入大眾生活的。雖然魔數精密測量本身可能對人們影響不大,但測量的工具,例如本實驗中用到的原子干涉儀早已被改造成重力儀服務於資源勘探、地震研究等任務。未來,類似的超越傳統測量精度極限的研究與應用將不斷湧現,量子精密測量大有可為。
接下來Guellati-Khélifa和Holger Müller(他領導得到2018年當時最準確的α測量值)團隊都將改進實驗裝置並進行新一輪測量,也許不久後我們就能看到測量值的小數點又往後移動了一位。
Guellati-Khélifa在實驗室丨圖源:quantamagazine.org
在精細結構常數的精密測量這件事情上,Guellati-Khélifa已經堅持了近22年,且仍在不斷突破極限。很多人好奇,“什麼樣的人會為如此細微的提升投入如此巨大的努力?” Guellati-Khélifa提出了三個特點,“必須嚴謹,富有激情,並且忠於事實。”Holger Müller則表示:“我認為這很激動人心,因為我喜歡搭建閃亮、漂亮的機器。而且也喜歡把它們用到重要的事情中去。”[4]希望就如下面這段話所言:“將小數點往後移一位,你就會發現新的真理。” [10]
參考文獻與註釋:
[1] Nature 588, 61–65 (2020)。
[2] Science 360, 191–195 (2018)。
[3] 參考國際化標準ISO 5725-1和國家標準GB/T 6379,準確度(Accuracy)包含了正確度(Trueness)和精密度(Precession)兩方面。
[4] https://www.quantamagazine.org/physicists-measure-the-magic-fine-structure-constant-20201202/。
[5] 物理學中的“魔數”, 盧昌海 https://www.changhai.org/articles/science/physics/FSC.php#footnotes。
[6] Science Advances 6.17 (2020): eaay9672。
[7] Phys. Rev. Lett. 106, 080801 (2011)。
[8] Phys. Rev. Lett. 100, 120801 (2008)。
[9] Atoms 7, 28 (2019)。
[10] 出自物理學家葉軍,參考https://icqm.pku.edu.cn/rydw/jzyg/236916.htm。